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A projection operator formalism is presented which allows to derive an exact set
of equations for correlation functions and susceptibilities in out of equilibrium
situations of many particle systems. Explicitely considered is the case of an
initial temperature quench in a simple liquid stabilized by a Gaussian thermo-
stat. Implications for the violation of the fluctuation dissipation theorem in
simple structural glass formers like Lennard–Jones glasses and colloidal glasses
and the differences to the Kawasaki–Gunton projection operator are discussed.
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1. INTRODUCTION

One of the fundamental problems of non–equilibrium statistical physics is
to find mathematical descriptions for systems which are by definition not in
a unique state (the equilibrium) but in a transient, time dependent state.
The first rigorous approach to this problem is due to Boltzmann with the
famous Boltzmann equation for the phase space density f(r, p, t). His
ansatz lead to the development of powerful methods known as kinetic
theory. (1, 2) One of the highlights of this theory was the explanation of the
long time tails and non analytic corrections to wave vector expansions of
transport coefficients in dilute systems. (3–8) Kinetic theory is often starting
with a small density expansion and then trying with the help of sophis-
ticated resummation techniques to extend the validity to higher densities. (4)



For more complicated systems or for very high densities where glass tran-
sitions occur or where solidification sets in, this systematic ansatz has
natural limitations. Another approach to deal with systems lying beyond
the reach of small density expansions and its systematic extensions is the
projection operator techniques. (9–12) Within this method one tries to isolate
with physical intuition and general arguments like conservation laws the
most relevant variables in order to derive exact generalized Langevin equa-
tions for those variables. All the unknown fluctuations or those considered
as unimportant are buried in ‘‘memory functions’’ and ‘‘fluctuating forces’’
which are assumed to be simpler or just less important than the main
variables. For these unknown functions approximations have to be made
to obtain closed equations. For complicated systems the approximations
are very often uncontrolled but the only possibility to make progress. In a
few cases like the glass transition problem they can lead to astonishingly
interesting even quantitatively correct results. (13–15) In the glass transition
problem an equilibrium projection operator, the Mori–Zwanzig projection
operator is used to derive equations for the density–density correlation
function of simple glass formers. The memory functions are approximated
with the help of mode coupling approximations, first systemtically explored
by Kawasaki. (16, 17) This projection operator is only valid if the system to be
described is in thermodynamic equilibrium. Ideal glasses do not fulfill this
condition. Therefore, although a glass transition is predicted within the
mode coupling theory of the glass transition, (18) the equations are only jus-
tified as long as the system is in the supercooled state. Inconsistencies arise
as soon as the ideal glass state is entered. (19) Progress in this problem was
first achieved by extending simple spin glass models which exhibit a glass
transition analogous to the structural glass transition (20–22) to non equilib-
rium situations with the help of field theoretic techniques. (23, 24) In this
approach exact equations for the correlation functions and susceptibilities
of the mentioned simple mean field p-spin models were derived without
making any equilibrium assumption. This allowed to discuss the violation
of the fluctuation dissipation theorem (FDT) in those spin glass systems
and to identify interesting generalizations of the FDT in glasses. Since the
validity of the FDT is implicitly assumed to be valid in the Zwanzig–Mori
projection operator formalism even in the glassy regime, the mode coupling
theory based on this approach (18) leads to qualitatively incorrect results for
the idealized glass state. It is only due to the existence of hopping processes
which smear out the ideal glass transition and allow equilibration also
below the glass transition temperature of the idealized theory transition,
that some of the results for the idealized theory survive also below the glass
transition. Notable exceptions where this argument is not applicable are
colloidal systems which do not seem to exhibit hopping phenomena, and

608 Latz



numerical or experimental techniques which allow to perform experiments
immediately after a quench within a time shorter than the nearly diverging
time scale of the slowest relaxation in supercooled systems, the so called
a- or structural relaxation time. If this time scale is long due to a complex
molecular structure as, e.g., in polymers or in systems with hydrogen
bonding (25) it is very likely to observe violations of the FDT and related
non equilibrium phenomena like aging. (26) Unfortunately these kinds of
systems are too complicated to be treated with the help of field theoretic
techniques. It is therefore interesting to extend the projection operator
approach to out of equilibrium situations. First steps with the help of the
Kawasaki–Gunton (K–G) projection operator (27) have been done in ref. 28.
Within this approach it is conceptually difficult to obtain exact equations
for correlation functions and susceptibilities. This problem could be cir-
cumvented in ref. 29 where the final equations obtained by an alternative
projection operator were evaluated in mode coupling approximation,
obtaining violations of the FDT for structural glasses. It is the purpose of
the present paper to derive explicitely this alternative non–equilibrium
projection operator formalism and to discuss its differences from the K–G
projection operator. To make the discussion not to abstract I will discuss
the specific problem of quenching a simple liquid from the liquid into the
glass and fixing its temperature with the help of a Gaussian thermostat.

2. EQUATION OF MOTION

I consider an N-particle system, which, in equilibrium, is described
by a Hamilton function H=;j pF

2
j/2m+

1
2;i ] j V(|rFi−rFj |). A convenient

measure for the temperature is the average of the kinetic temperature per
particle 3/(2b)=O;j pF

2
j/2mP/N :=K. It has been shown, that this defi-

nition is also applicable in out of equilibrium situations. (30, 31) The physical
situation I want to describe is a quench from an initial equilibrium state at
temperature Ti=1/bi to a final state at temperature T=1/b. The overall
density and the volume are kept constant. In practice this is achieved by
changing the temperature of the heat bath coupled to the system under
investigation. A simplified theoretical description is obtained under the
plausible assumption that the kinetic energy is equilibrating very quickly
with the external temperature. The non-equilibrium processes occuring in
the system after the quench are, under this assumption, related only to
relaxation of structural degrees of freedom. This ansatz was successfully
used to describe time dependent thermodynamic derivatives in glassy sys-
tems. (30, 31) Therefore it is justified to replace the original problem by a
slightly simpler situation, where an artificial thermostat is coupled to each
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individual particle such that the average of the total kinetic energy is kept
strictly constant in time. This thermostat is the well known Gaussian
thermostat, used in non-equilibrium molecular dynamic simulations. (32) The
equation of motion for a function A(rFj(t), pFj(t)) of the phase space variables
rFj(t), pFj(t) can be modeled by a time dependent differential operator L(t):

dA
dt
=iU(t, 0) L(t) A(0)=U(t, 0) 1 iL0A+C

j
a(t) pFj(0)

“

“pFj(0)
A(rFi, pFi)2

(1)

where U(t, 0)=T+ exp(i > t0 L(tŒ) dtŒ) is a time ordered product (time
increases from left to right). L0=−i{H, · } is the Liouville operator. a(t) is
the Gaussian thermostat which couples to each individual particle. It is
adjusted such that O;j

pF 2j (t)
2m P 23=N/b for all times t. I used the notation

{A, B}=;j
“A
“rFj
“B
“pFj
− “A
“rFj
“B
“pFj
for the Poisson bracket. Applying (1) to the

phase space variables leads to the well known equation of motion for a
thermostatted system

drFj(t)
dt
=pFj/m (2)

dpFj(t)
dt
=−

“V({rF(t)})
“rFj(t)

+a(t) pFj(t) (3)

The necessity of applying the thermostat arises since the initial prob-
ability density rne has to describe a situation where the kinetic energy is
equilibrated at the lower temperature, K(t=0)=3/(2b), but the structural
part of the partition function ZS=Oexp−biVP is the one at the higher
temperature 1/bi. This is achieved by choosing rNe=exp(−bK−biV)/Z,
where Z is the non–equilibrium partition function. An exact expression
for a(t) is obtained by multiplying (3) from left with pFj(t), averaging over
the non-equilibrium ensemble and using the requirement m dK(t)/dt=
OpFj(t) dpFj(t)/dtP=0. The thermostat can therefore be expressed as

a(t)=
b

3m
OpFj(t) “V/“rFj(t)P=

b

3m
7dV
dt
8 (4)

The only possibility to study equations of motion like (2), (3) under
the described boundary conditions ‘‘exactly’’ was the use of molecular
dynamic simulations. (33–35) These simulations show that quenching from a
liquid state into a glassy state leads to interesting non-equilibriumphenomena
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already on the level of two point density–density correlation functions and
the corresponding susceptibilities. (33–35) It is therefore interesting to study
Eqs. (2) and (3) not directly, but its consequences on the density–density
two point correlation function and susceptibilities.
The density and current fluctuations are defined by nq(t)=;j e iqF rFj(t)

and jq(t)=;j
qFpFj
qm e

iqF rFj(t). Here I chose only the longitudinal current fluctua-
tions parallel to the external wave vector qF. With these two variables the
particle conservation and the momentum conservation in the direction of qF
is taken into account. In principle also the energy conservation could be
dealt with explicitely. (30, 31) The equation of motion for the variables under
consideration follows from (1):

dnq(t)
dt
=i
q
m
jq(t)/m (5)

djq(t)
dt
=iU(t, 0) L0 jq(0)+a(t) jq(t) (6)

The force fluctuation U(t, 0) L0 jq(0) can be split into two contribu-
tions: one which is directly proportional to the density and current fluctua-
tion and one ‘‘perpendicular’’ to it. If there were only a linear contribution
with known coefficients the solution of the equation of motion were
extremely simple. This is of course not the case in general. The most
interesting physics is hidden in the ‘‘perpendicular’’ part. It is also obvious
that the meaning of ‘‘perpendicular’’ is not unique but depends on the
scalar product which we define in the space of fluctuations. The problem
is to find the scalar product which is best adapted to the kind of problems
to be solved. Having defined the scalar product which I will do below,
the splitting can be achieved by introducing a projection operator P(t),
such that U(t, 0) P(t) Ai(0)=Ai(t), where Ai(0)=nq(0), jq(0) for i=1, 2,
respectively. To describe non-equilibrium fluctuations the projection
operator is in general time-dependent, expressing the fact that the statisti-
cally relevant states are changing with time if not all degrees of freedom are
in equilibrium with the external boundary conditions. The problem of
defining the appropriate scalar product is therefore equivalent to defining
an appropriate projection operator.
Since one of the goals of the theory is to discuss the fluctuation dissi-

pation theorem in out of equilibrium situations it would be useful to derive
a theory in which the correlation functions and susceptibilities occur expli-
citely without any additional approximation. The Kawasaki–Gunton
projection operator Pc(t)=|Ai(0)) S−1ij (t) (Aj(t)| U(t, 0)

(27) used in ref. 28
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does not fulfill this requirement. Here Sij(t)=(Ai(t) | Aj(t))=OdAg
i (t)

dAj(t)Pne is the equal time non–equilibrium correlation function of the
fluctuations dAg

i (t)=A
g
i (t)−OA

g
i (t)P, where

g means complex conjuga-
tion. It was noted in ref. 28 that with this projection operator based on the
correlation functions the susceptibility can only be defined with help of
memory functions. Only within a mode coupling ansatz the susceptibilities
is directly related to an explicit entity of the theory, the fluctuation pro-
pagator Ncjn(t1, t). N

c
jn(t1, t) can, within the Kawasaki–Gunton approach,

exactly be written in terms of two time correlation functions and equal time
correlation functions (9, 28)

Ncjn(t1, t)=S−1jj (t1) Cjn(t1, t)+S−1jn (t1) Cnn(t1, t) (7)

The susceptibility qq(t1, t)=O{ngq (t1), nq(t)}Pne :=[nq(t1) | nq(t)] is
then given by

qq(t1, t)=−i
q
m
Ncjn(t1, t)+iq F

t

t1
dtŒ[nq(t1), F

c
q(t1, tŒ)] N

c
jn(tŒ, t) (8)

Here Fcq(t1, tŒ) is the random force of the K–G projection operator
formalism which is uncorrelated with density and current fluctuations at t1,
i.e., which fulfills the condition (Ai(t1) | Fq(t1, t))=0, where Ai(t1)=nq(t1),
jq(t1), for i=1, 2, respectively. It is important to note that the Poisson
bracket of Ai with the random force occurring in (8) does not vanish in
general. If we assume, that for long times t1, tQ. velocity fluctuations at
time t and fluctuations of the spatial degrees of freedom at the same time
are becoming uncorrelated again and that the velocity fluctuations are
Maxwell distributed at the temperature of the heat bath, the equal time
correlation of density and current fluctuations are simplifying considerably.
It is then

lim
tQ.

S(t)=N RS
.

q 0
0 1/bm
S (9)

S.q is the static structure factor reached for very long times and it was
used that limtQ. Sjn(t)=(nq(t) | jq(t))=0. Putting this form back into (8)
and using “C(t1, t)/(“t1)=−iqCjn(t1, t) leads to a generalization of the
fluctuation dissipation theorem in the form

Tqq(t1, t)=
“Cnn(q; t1, t)

“t1
−F

t

t1
dtŒ dXq(t1, tŒ)

“Cnn(q; tŒ, t)
“tŒ

(10)
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where dXq(t1, tŒ)=m[nq(t1), F
c
q(t1, tŒ)]. In equilibrium the FDT violation

dXq(t1, tŒ) is exactly zero, since in equilibrium the average of the Poisson
bracket of the density fluctuation at t1 and the random force between t1
and t vanishes due to [nq, Fq]=b({nq, H} | Fq)=−iqb(jq | Fq) — 0. If in
non-equilibrium situations the Poisson bracket with the random force
were exactly given by its instantaneous Markovian part dXmarkovq (t1, tŒ)=
(1−Xq) d(t1−t), the generalization Tqq(t1, t)=−Xq “Cnn(q; t1, t)/“t found
for p-spin models and random manifolds (36) were obtained. Due to the
existence of renormalized corrections dX renormq (t1, t), deviations from this
form are possible. The experimental verification of the Markovian form of
(10) in simple glass formers (33, 35, 37) might be related to the fact that any
simple mode coupling approximation where the random force is expressed
in terms of all possible pairs of density and current fluctuations Fq(t1, t)=
Qc(t1) |nq−k(t1) nk(t1)) R

(1)
q, k(t1, t)+Qc(t1) |nq−k(t1) jk(t1)) R

(2)
q, k(t1, t)+Qc(t1)

|jq−k(t1) jk(t1)) R
(3)
q, k(t1, t) leads to a vanishing renormalized part. The form

of the R (a)(t1, t) is not important for the argument. The vanishing of the
simplest mode coupling contributions can easily be checked by evaluating
the Poisson brackets of nq(t1) with all occurring pairs projected with Qc(t1)
perpendicular (in the K–G definition) to density and current fluctuations
and averaging the result over the non-equilibrium ensemble.
With the K–G approach, we therefore recover the simplified Markovian

form of the generalization of the FDT within mode coupling approxima-
tions, but a separate theory for the Markovian term is needed. Instead of
doing this, it seems to be more reasonable to work out a projection opera-
tor formalism which leads immediately to separate equations for suscepti-
bilities and correlation functions. This goal can be achieved by introducing
a projection operator formalism which is based on Poisson brackets instead
of correlation functions

P(t)=|Ai(0)] q
−1
ij (t, t) [Aj(t)| U(t, 0) — 1−Q(t) (11)

where Ai(t)=nq(t), jq(t) for i=1, 2, respectively. Its action on any func-
tion of the phase space variables B(rFi(t), pFi(t)) is given by P(t) B(rFi(0),
pFi(0))=|Ai(0)] q

−1
ij (t, t) [Aj(t) | U(t, 0) B(rFi(0), pFi(0))]=|Ai(0)] q−1ij (t, t)

[Aj(t) | B(rFi(t), pFi(t))]. Contrary to the correlation functions the equal time
susceptibilities can be evaluated exactly for all times t even in non-equilib-
rium

q(t, t)=N R 0 −iq/m
−iq/m 0

S (12)
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The projection operator therefore has the simple form

P(t)=
im
Nq
(|nq(0)] [jq(t)| U(t, 0)+|jq(0)] [nq(t)| U(t, 0) (13)

It has all the properties of a general time dependent projection opera-
tor listed in ref. 9. Especially to note are

P(t1) P(t)=P(t) (14)

dP(t)
dt
=Ṗ(t)=P(t) Ṗ(t) Q(t) (15)

These two conditions are used to derive equations of motion for the
density and current fluctuations. The procedure is completely general. (9)

d dnq(t)
dt

=iq djq(t) (16)

N
d2 dnq(t)
dt2

=−NU(t, 0) L(t) djq(0) (17)

=−im dnq(t)[jq(t) | L(t) jq(t)]−im djq(t)[nq(t) | L(t) jq(t)]

+m F
t

t1
dtŒ dnq(tŒ) Sq(tŒ, t)

−NqU(t1, 0) Q(t1) G(t1, t) L(t) djq(0) (18)

The time t1 is an arbitrary time smaller then t. The memory function
Sq(t1, t) is an explicit function of two times.

Sq(t1, t)=[Ljq(t1) | U(t1, 0) Q(t1) G(t1, t) L(t) djq(0)] (19)

G(t1, t)=T exp 1 i F t
t1
dtŒ L(tŒ) Q(tŒ)2 (20)

where the operator T induces a time ordering from left to right. S(t1, t) is
the average of the Poisson bracket of the force L(t1) jq(t1) at time t1 and
the fluctuating force

Fq(t1, t)=U(t1, 0) Q(t1) G(t1, t) L(t) djq(0) (21)
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between t1 and t. It is very important to note that this fluctuation force is
not uncorrelated with the fluctuations at t1, i.e., (Ai(t1) | Fq(t1, t)) ] 0 in
general. The name fluctuating force is justified since it is not susceptible to
changes in the generalized chemical potentials mi(t1) at t1 which couple to
density and current fluctuations respectively, i.e., its Poisson bracket with
density and current fluctuations at t1 are zero:

[nq(t1) | Fq(t1, t)]=0 (22)

[jq(t1) | Fq(t1, t)]=0 (23)

Due to this property the time dependent differential operator L(t) can
be replaced by the Liouville operator L0 in the fluctuating force and in the
memory functions since the thermostat leads to a term proportional to the
current fluctuation in the force L(t) jq(0), i.e., Fq(t1, t)=U(t1, 0) Q(t1)
G(t1, t) L0 jq(0) and Sq(t1, t)=[L0 jq(t) | Fq(t1, t)].
Equations (16) and (17) have the form of an inhomogeneous integro-

differential equation, the random force Fq(t1, t) being the inhomogeneous
term. This set of equations can successively be solved by first introducing
a formal solution Nkl(q; t1, t) of the homogeneous equation where k, l ¥
{1 — nq, 2 — jq} and then constructing the full solution with Nij(q; t1, t) and
the inhomogeneous term. The functions Nij(q, t1, t) are defined by the
homogeneous set of equations

“Nk1(q, t1, t)
“t

=iqNk2(q, t1, t) (24)

N
“
2Nk2(q, t1, t)
“t2

=−imNk1(q, t1, t)[jq(t) | L0 jq(t)]+a(t) qNk2(q, t1, t)

+m F
t

t1
dtŒNk1(q; t1, tŒ) Sq(tŒ, t) (25)

with the initial condition Nij(q; t1, t1)=dij. I have also used [nq(t) | L0 jq(t)]
=0 and [jq(t) | jq(t)]=0 to simplify the linear terms in Eqs. (24) and (25).
It can easily be checked that the full solutions are then given by

dnq(t)=dnq(t1) N11(q; t1, t)+djq(t1) N21(q; t1, t)+i F
t

t1
Fq(t1, tŒ) N21(tŒ, t)

(26)

djq(t)=dnq(t1) N12(q; t1, t)+djq(t1) N22(q; t1, t)+i F
t

t1
Fq(t1, tŒ) N22(tŒ, t),

(27)

Non-Equilibrium Projection-Operator for a Quenched Thermostatted System 615



The homogeneous solutions are exactly related to the susceptibilities.
Using Eqs. (22), (23), (26), and (27) the susceptibilities can be expressed by

qnn(q; t1, t)=−i
q
m
N21(q; t1, t) (28)

qjn(q; t1, t)=−i
q
m
N11(q; t1, t) (29)

qnj(q; t1, t)=−i
1
q
“qnn(q; t1, t)/“t (30)

qjj(q; t1, t)=−i
1
q
“qjn(q; t1, t)/“t (31)

This linear relation should be contrastedwith the relation (8) in theKawasaki–
Gunton projection operator formalism.
The result for the correlation function can formally be obtained by

multiplying Eqs. (26) and (27) from left with the fluctuations at t1 and
averaging over the non-equilibrium ensemble. By doing so they are
expressed by the unknown equal time correlation functions and the
unknown correlation of the fluctuations with the fluctuating force. To
obtain a more satisfying result it is therefore useful to derive equations for
the correlation functions from the equations for the fluctuations. Since only
the initial state (t1=0) is known, the time t1 should be put to zero. Mul-
tiplying Eq. (17) from left with the density fluctuation ngq (tw) at some
waiting time tw from left and averaging over the non-equilibrium ensemble
the equation for the density–density correlation function Cnn(q; tw, t) is
obtained:

N
“
2Cnn(q, tw, t)
“t2

=−imCnn(q, tw, t)[jq(t) | L0 jq(t)]+a(t) qCnj(q, tw, t)

+m F
t

0
dtŒ Cnn(q; tw, tŒ) Sq(tŒ, t)

−Nq(nq(tw) | Q(0) G(0, t) L(t) jq(0)) (32)

The unknown correlation function (nq(tw) | Q(0) G(0, t) L(t) jq(0)) can be
simplified in two steps. First we use the K–G projection operator at time
t1=0 to express explicitely the direct correlation to the initial density and
current fluctuations.
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(nq(tw) | Fq(0, t))

=Cnn(q; tw, 0)
1

Snn(0)
(nq(0) | Fq(0, t)) (33)

+Cnj(q; tw, 0)
1
Sjj(0)

(jq(0) | Fq(0, t))+(nq(tw) | Qc(0) Fq(0, t)) (34)

With the help of Eqs. (26) and (28), the second part of Eq. (34) can then be
transformed into

(nq(tw) | Qc(0) Fq(0, t))=
m
N

F
tw

0
dtŒ qg

nn(q; tŒ, tw) Mq(tŒ, t) (35)

Here Mq(tŒ, t) is the correlation function of the random forces between 0
and tŒ, and 0 and t respectively.

Mq(tŒ, t)=(Fq(0, tŒ)| Qc(0) |Fq(0, t)) (36)

The equation for the correlation function therefore reads

N
“
2

“t2
Cq(tw, t)=−imCq(tw, t)[jq(t) | L0 jq(t)]

−ima(t)
“

“t
Cq(tw, t)+m F

t

0
dtŒ Cq(tw, tŒ) Sq(tŒ, t)

+m F
tw

0
dtŒ qg

q (tŒ, tw) Mq(tŒ, t)

−qCq(tw, 0)
1
Sq(0)

(nq(0) | Fq(0, t))

−qCnj(q; tw, 0)
1
Sjj(0)

(jq(0) | Fq(0, t)) (37)

Using Eqs. (24), (25), (28), and (29), the equation for the density–
density susceptibility is

N
“
2

“t2
qq(tw, t)=−imqq(tw, t)[jq(t) | L(t) jq(t)]

−ima(t)
“

“t
qq(tw, t)+m F

t

tw
dtŒ qq(tw, tŒ) Sq(tŒ, t). (38)
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The unknown thermostat can also be expressed in terms of correlation
functions and memory functions. Since the thermostat is coupling to each
individual particle it is necessary to repeat the presented derivation of the
collective density and current fluctuations for the single particle density and
current fluctuations, n sq(t)=exp(iqrFs(t) and j

s
q(t)=(qF/q) vF

s(t)) exp(iqrFs(t),
respectively. The procedure is completely analogous to the one for the col-
lective fluctuations. Also the equations for single particle correlation func-
tions and susceptibilities have exactly the same structure as the one for the
collective fluctuations. An equation for the thermostat is then obtained
from the requirement that the single particle current correlation function at
equal times (j sq(t) j

s
q(t))=(vF

s(t) | vF s(t))/3 is constant equal to 1/(bm) due
to the thermostat requirement. It is of course also possible to find other
approximation strategies for the exact expression (4). For very long times
the effect of the thermostat can be neglected since a simple scaling argu-
ment based on (4) shows that a(t) decays at least as 1/t since it is the time
derivative of the total potential energy.
It was shown in ref. 29 that the set of Eqs. (37) and (38) leads in mode

coupling approximation to a generalized theory for the fluctuation dissipa-
tion ratio originally introduced in ref. 23 for p-spin systems and it allows to
formulate a theory for the structure factor of a glass limtQ. Sq(t)=S

.

q ,
i.e., in the non-ergodic state. This structure factor does not only depend on
the external thermodynamic parameters but also on the degree of non-
ergodicity Fq measured in terms of the two point correlation functions
Fq=limtQ. limtw Q. Cnn(q; tw, t).
Here I want to show that Eqs. (37) and (38) reduce to the standard

Mori equations for the correlation functions, if the initial state is an equi-
librium state and the external heat bath temperature is the same as the
temperature of the canonical equilibrium distribution. In this case the
Gaussian thermostat can be put to zero, a(t) — 0.
In equilibrium the susceptibility and the correlation function are time

translational invariant and they obey the fluctuation dissipation theorem
dCq(t− tw)
dt =−Tq(t− tw). This is a special case of the general relation

[A | B(t)]eq=b(A | {H, B(t)})=−
d
dt
(A | B(t))eq=b(Ȧ | B(t))eq (39)

which can easily be obtained by partial integrations in the canonical
ensemble. It is also possible to show (see Appendix) that in equilibrium the
memory functions S(t− tw) andM(t−tw) obey a FDT of the second kind.

dMq(t− tw)
dt

=−TSq(t− tw) (40)
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Due to relation (39) the relation (jq(0) | Fq(0, t))3 [nq(0) | Fq(0, t)]
=0 is valid. The equation for the correlation function (37) can therefore be
written (again making use of (39)) as

N
“
2

“t2
Cq(tw, t)=−mb((L0 jq | L0 jq)−M(t, t)) Cnn(q; tw, t)

−mb F
t

t1
dtŒ
d
dtŒ
Cnn(q; tŒ−tw) Mq(t− tŒ)

+m F
tw

0
dtŒ 1qq(tw−tŒ)−b

d
dtŒ
Cnn(q; tŒ−tw)2Mq(tŒ, t)

−qCq(tw, 0) 1
1
Sq(0)

(nq(0) | Fq(0, t))+
mb
q
M(0, t)2 (41)

Using the definition of Mq(tw, t) (36) in equilibrium and the FDT for the
correlation function it can be seen that the last two lines of Eq. (41) vanish
and that the equation for the correlation function can be written as

“
2

“t2
Cq(tw, t)=−mb(L0 jq |Pc | L0 jq) Cnn(q; tw, t)

−mb F
t

t1
dtŒ
d
dtŒ
Cnn(q; tŒ−tw) Mq(t− tŒ) (42)

Here it was used thatPc=1−Qc.With (L0 jq |Pc| L0 jq)=(L0 jq) |nq)(nq | L0 jq)/
Snn(q)=(q/mb)2/Snn(q) the standard Mori form of the equation of motion
for the density–density correlation function is obtained.

3. CONCLUSION

I presented an alternative time dependent non-equilibrium projection
operator formalism which allows to derive equation of motion not only for
the correlation functions but also for susceptibilities. First interesting
results using this new projection operator have been presented in ref. 29.
The presented projection operator is based on Poisson brackets, i.e., on
susceptibilities instead of on correlation functions as in the Kawasaki–
Gunton projection operator used in ref. 28. It is important to realize, that
there are no a priori arguments which allow to decide which approach is
more appropriate. E.g., the Kawasaki–Gunton operator allows to derive
the most general form of the FDT in non equilibrium situations (see
Eqs. (8) and (10)), where the projection operator (11) ultimately leads in
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mode coupling approximation to a theory for the Markovian contribution
of the general FDT obtained with the K–G operator. Also in physical situa-
tions where the equal time correlation function does not reach a stationary
state on human time scales and if there are, e.g., experimental informations
or general scaling arguments for their time dependence available, it cannot
be excluded that the K–G-approach is more appropriate since the equal time
correlation function appears explicitely in the equation of motion for the
two time density–density correlation functions. I also want to mention that
there is another method available (38) to derive non-equilibrium equations of
motion for the correlation functions which are structurally equivalent to the
Equations obtained in ref. 28 with the K–G-operator. The origin of this
equivalence was noted (on a very abstract level) in ref. 39.
To tackle the fundamentally and practically important problem of non-

equilibrium relaxations in structural glasses and soft condensed matter it is
crucial to have reliable starting points for approximations. It is the hope
that the development of exact non-equilibrium equations of motion for
density fluctuations in simple systems could be the guide to develop equa-
tions of motion, based on sound statistical concepts, for more complicated
physical systems like polymers or structural glasses with internal degrees of
freedom and also for more complicated physical situations like sheared
driven systems.

APPENDIX. THE FLUCTUATION DISSIPATION THEOREM OF THE

SECOND KIND

In equilibrium the projection operator Q(t) is time independent
Q(t) — Q. The memory function S(t− tŒ) in equilibrium is given by

S(t− tŒ)=[L0 jq(0)| Q exp(iLQ(t−tŒ)) |Ljq(0)] (43)

=[Q exp(iLQtŒ) L0 jq(0) | Q exp(iLQt) L0 jq(0)] (44)

In the last equality it was used that Q and L are self adjoint operators with
respect to [ · | · ]. By using P(t1) Pc(t)=Pc(t) and the general relation (39)
we arrive at

Sq(t− tŒ)=−b(QcQ exp(iLQtŒ) L0 jq | {exp(iLQt) Lj, H}) (45)

=−b
d
dt
(Q exp(iLQtŒ) L0 jq | Qc exp(iLQt) Lj) (46)

=−b
d
dt
Mq(t− tŒ) (47)

It was used that (QcA | B)=(A | QcB).
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